15 citations to 10.1006/jdeq.2000.3769 (Crossref Cited-By Service)
  1. Mokhtar Kirane, Mahmoud Qafsaoui, “Global Nonexistence for the Cauchy Problem of Some Nonlinear Reaction–Diffusion Systems”, Journal of Mathematical Analysis and Applications, 268, no. 1, 2002, 217  crossref
  2. Mokhtar Kirane, Ahmed Alsaedi, Bashir Ahmad, “On systems of reaction–diffusion equations with a balance law: The sequel”, Computers & Mathematics with Applications, 78, no. 5, 2019, 1244  crossref
  3. Superlinear Parabolic Problems, 2007, 377  crossref
  4. El Haj Laamri, Michel Pierre, “Global existence for reaction–diffusion systems with nonlinear diffusion and control of mass”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34, no. 3, 2017, 571  crossref
  5. Nassima Boudiba, Michel Pierre, “Global Existence for Coupled Reaction–Diffusion Systems”, Journal of Mathematical Analysis and Applications, 250, no. 1, 2000, 1  crossref
  6. Laurent Desvillettes, Klemens Fellner, “Exponential decay toward equilibrium via entropy methods for reaction–diffusion equations”, Journal of Mathematical Analysis and Applications, 319, no. 1, 2006, 157  crossref
  7. Belgacem Rebiai, Saïd Benachour, “Global classical solutions for reaction–diffusion systems with nonlinearities of exponential growth”, J. Evol. Equ., 10, no. 3, 2010, 511  crossref
  8. Salah Badraoui, Hichem Louafi, “Generalized result with a unified proof of global existence to a class of reaction‐diffusion systems”, Math Methods in App Sciences, 39, no. 18, 2016, 5365  crossref
  9. Said Kouachi, “Global existence of solutions to reaction-diffusion systems without conditions on the nonlinearities growth”, Math. Meth. Appl. Sci., 34, no. 7, 2011, 798  crossref
  10. S. Abdelmalek, M. Kirane, A. Youkana, “A Lyapunov functional for a triangular reaction–diffusion system with nonlinearities of exponential growth”, Math Methods in App Sciences, 36, no. 1, 2013, 80  crossref
1
2
Next