14 citations to 10.1016/0378-3758(89)90098-0 (Crossref Cited-By Service)
  1. N. Hamada, T. Helleseth, “Arcs, blocking sets, and minihypers”, Computers & Mathematics with Applications, 39, no. 11, 2000, 159  crossref
  2. Noboru Hamada, Tor Helleseth, “A characterization of some {v2+2v3, v1+2v2;k−1,3}-minihypers and some (vk−30,k,3k−1−21;3)-codes meeting the Griesmer bound”, Journal of Statistical Planning and Inference, 34, no. 3, 1993, 387  crossref
  3. Noboru Hamada, Tor Helleseth, “A characterization of some {2υα+1+υγ+1, 2υα+υγ; k−1, 3}- minihypers and some (n,k, 3k−1 − 2 · 3α − 3γ; 3)-codes (k⩾3, 0⩽α<γ<k−1) meeting the Griesmer bound”, Discrete Mathematics, 104, no. 1, 1992, 67  crossref
  4. Noboru Hamada, Tomoko Maekawa, “A characterization of some {3v1 + v3, 3v0 + v2; 3, 3}-minihypers and its applications to error-correcting codes”, Journal of Statistical Planning and Inference, 56, no. 1, 1996, 147  crossref
  5. Noboru Hamada, Michel Deza, “A survey of recent works with respect to a characterization of an (n, k, d; q)-code meeting the Griesmer bound using a min·hyper in a finite projective geometry”, Discrete Mathematics, 77, no. 1-3, 1989, 75  crossref
  6. Ivan Landjev, Assia Rousseva, “Characterization of some optimal arcs”, AMC, 5, no. 2, 2011, 317  crossref
  7. Noboru Hamada, Tor Helleseth, “A characterization of some {3v2 + v3, 3v1 + v2; 3, 3}-minihypers and some [15, 4, 9; 3]-codes with B2 = 0”, Journal of Statistical Planning and Inference, 56, no. 1, 1996, 129  crossref
  8. Noboru Hamada, Tor Helleseth, “A Characterization of Some Minihypers in a Finite Projective Geometry PG(t, 4)”, European Journal of Combinatorics, 11, no. 6, 1990, 541  crossref
  9. Noboru Hamada, Tor Helleseth, “The uniqueness of [87,5,57; 3]-codes and the nonexistence of [258,6,171; 3]-codes”, Journal of Statistical Planning and Inference, 56, no. 1, 1996, 105  crossref
  10. Noboru Hamada, Tor Helleseth, “A characterization of some {3vμ + 1, 3vμ; k - 1, q}-minihypers and some [n, k, qk-1 - 3qμ; q]-codes (k ⩾ 3, q ⩾ 5, 1 ⩽ μ < k - 1) meeting the Griesmer bound”, Discrete Mathematics, 146, no. 1-3, 1995, 59  crossref
1
2
Next