45 citations to 10.2298/FIL1301001B (Crossref Cited-By Service)
  1. Jü Hua, Bo-Yan Xi, Feng Qi, “Some new inequalities of Simpson type for strongly $\varvec{s}$ s -convex functions”, Afr. Mat., 26, no. 5-6, 2015, 741  crossref
  2. Bo-Yan Xi, Feng Qi, “Hermite-Hadamard type inequalities for geometrically r-convex functions”, Studia Scientiarum Mathematicarum Hungarica, 51, no. 4, 2014, 530  crossref
  3. M. Adil Khan, T. Ali, S. S. Dragomir, M. Z. Sarikaya, “Hermite–Hadamard type inequalities for conformable fractional integrals”, RACSAM, 112, no. 4, 2018, 1033  crossref
  4. Musa Çakmak, “Refinements of bullen-type inequalities for s–convex functions via Riemann-Liouville fractional integrals involving Gauss hypergeometric function”, Journal of Interdisciplinary Mathematics, 22, no. 6, 2019, 975  crossref
  5. Meltem SERTBAŞ, İlknur MİHYAZ, “Some Results for $(s,m)$-convex Function in the Second Sense”, Maltepe Journal of Mathematics, 4, no. 1, 2022, 1  crossref
  6. Hong-Ping Yin, Feng Qi, “Hermite-Hadamard Type Inequalities for the Product of $(\alpha, m)$-Convex Function”, Missouri J. Math. Sci., 27, no. 1, 2015  crossref
  7. Muhammad Tariq, Sotiris K. Ntouyas, Asif Ali Shaikh, “A Comprehensive Review of the Hermite–Hadamard Inequality Pertaining to Fractional Integral Operators”, Mathematics, 11, no. 8, 2023, 1953  crossref
  8. B. Meftah, K. Mekalfa, “Some weighted trapezoidal inequalities for differentiable log-convex functions”, Journal of Interdisciplinary Mathematics, 24, no. 3, 2021, 505  crossref
  9. Muhammad Amer Latif, “Hermite–Hadamard-type inequalities for geometrically r-convex functions in terms of Stolarsky’s mean with applications to means”, Adv Differ Equ, 2021, no. 1, 2021, 371  crossref
  10. F. Qi, T.-Yu Zhang, B.-Ya. Xi, “Hermite–Hadamard-Type Integral Inequalities for Functions Whose First Derivatives are Convex”, Ukr Math J, 67, no. 4, 2015, 625  crossref
Previous
1
2
3
4
5
Next