- JinXun Wang, Tao Qian, “Approximation of monogenic functions by higher order Szegö kernels on the unit ball and half space”, Sci. China Math., 57, no. 9, 2014, 1785
- Lin Xu, Shaobo Lin, Zongben Xu, “Learning capability of the truncated greedy algorithm”, Sci. China Inf. Sci., 59, no. 5, 2016, 052103
- Miguel Berasategui, Silvia Lassalle, “Weak weight-semi-greedy Markushevich bases”, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 2023, 1
- Y. Fadaei, M. Mohseni Moghadam, “A greedy sparse meshless method for solving heat conduction problems”, Engineering with Computers, 33, no. 3, 2017, 631
- Thomas Boiveau, Virginie Ehrlacher, Alexandre Ern, Anthony Nouy, “Low-rank approximation of linear parabolic equations by space-time tensor Galerkin methods”, ESAIM: M2AN, 53, no. 2, 2019, 635
- Jan S. Hesthaven, Benjamin Stamm, Shun Zhang, “Efficient greedy algorithms for high-dimensional parameter spaces with applications to empirical interpolation and reduced basis methods”, ESAIM: M2AN, 48, no. 1, 2014, 259
- K. S. Speransky, P. A. Terekhin, “Existence of Frames Based on the Szegö Kernel in the Hardy Space”, Russ Math., 63, no. 2, 2019, 51
- Chen Chen, Na Chen, “Penalized empirical relaxed greedy algorithm for fixed design Gaussian regression”, Int. J. Wavelets Multiresolut Inf. Process., 14, no. 04, 2016, 1650019
- Paweł Bechler, “Existence of the best n-term approximants for structured dictionaries”, Arch. Math., 99, no. 1, 2012, 61
- M. Billaud-Friess, A. Nouy, O. Zahm, “A tensor approximation method based on ideal minimal residual formulations for the solution of high-dimensional problems”, ESAIM: M2AN, 48, no. 6, 2014, 1777