29 citations to 10.1103/PhysRevE.64.056208 (Crossref Cited-By Service)
  1. M. Mendoza, P. A. Schulz, “Evolution of wave-function statistics from closed quantum billiards up to the open quantum dot limit: Application to the measurement of dynamical properties through imaging experiments”, Phys. Rev. B, 74, no. 3, 2006, 035304  crossref
  2. Olof Bengtsson, Johan Larsson, Karl-Fredrik Berggren, “Emulation of quantum mechanical billiards by electrical resonance circuits”, Phys. Rev. E, 71, no. 5, 2005, 056206  crossref
  3. J.-B. Gros, U. Kuhl, O. Legrand, F. Mortessagne, “Lossy chaotic electromagnetic reverberation chambers: Universal statistical behavior of the vectorial field”, Phys. Rev. E, 93, no. 3, 2016, 032108  crossref
  4. B. Wahlstrand, I. I. Yakimenko, K.-F. Berggren, “Wave transport and statistical properties of an open non-Hermitian quantum dot with parity-time symmetry”, Phys. Rev. E, 89, no. 6, 2014, 062910  crossref
  5. Michael Barth, Hans-Jürgen Stöckmann, “Current and vortex statistics in microwave billiards”, Phys. Rev. E, 65, no. 6, 2002, 066208  crossref
  6. I. Rotter, “Effective Hamiltonian and unitarity of theSmatrix”, Phys. Rev. E, 68, no. 1, 2003, 016211  crossref
  7. A J Taylor, M R Dennis, “Geometry and scaling of tangled vortex lines in three-dimensional random wave fields”, J. Phys. A: Math. Theor., 47, no. 46, 2014, 465101  crossref
  8. J Barthélemy, O Legrand, F Mortessagne, “Inhomogeneous resonance broadening and statistics of complex wave functions in a chaotic microwave cavity”, Europhys. Lett., 70, no. 2, 2005, 162  crossref
  9. Piet W. Brouwer, “Wave function statistics in open chaotic billiards”, Phys. Rev. E, 68, no. 4, 2003, 046205  crossref
  10. O. Xeridat, C. Poli, O. Legrand, F. Mortessagne, P. Sebbah, “Quasimodes of a chaotic elastic cavity with increasing local losses”, Phys. Rev. E, 80, no. 3, 2009, 035201  crossref
Previous
1
2
3
Next