- I. A. Kunin, B. I. Kunin, 249, Trends in Applications of Pure Mathematics to Mechanics, 1986, 246
- A. I. Bobenko, A. G. Reyman, M. A. Semenov-Tian-Shansky, “The Kowalewski top 99 years later: A Lax pair, generalizations and explicit solutions”, Commun.Math. Phys., 122, no. 2, 1989, 321
- M P Kharlamov, “Periodic motions of the Kowalevski gyrostat in two constant fields”, J. Phys. A: Math. Theor., 41, no. 27, 2008, 275207
- CORA DĂNIASĂ, ANANIA GÎRBAN, RĂZVAN M. TUDORAN, “NEW ASPECTS ON THE GEOMETRY AND DYNAMICS OF QUADRATIC HAMILTONIAN SYSTEMS ON (𝔰𝔬(3))*”, Int. J. Geom. Methods Mod. Phys., 08, no. 08, 2011, 1695
- V. Yu. Ol’shanskii, “Regular Precession of a Gyrostat in Three Force Fields”, Mech. Solids, 58, no. 7, 2023, 2515
- Mikhail P. Kharlamov, “Bifurcation diagrams and critical subsystems of the Kowalevski gyrostat in two constant fields”, Hiroshima Math. J., 39, no. 3, 2009
- Ñ.Â. Ñîêîëîâ, “ÍÎÂÛÅ ÈÍÂÀÐÈÀÍÒÍÛÅ ÑÎÎÒÍÎØÅÍÈß ÎÄÍÎÉ ÊÐÈÒÈ×ÅÑÊÎÉ ÏÎÄÑÈÑÒÅÌÛ ÎÁÎÁÙ¨ÍÍÎÃÎ ÄÂÓÕÏÎËÅÂÎÃÎ ÃÈÐÎÑÒÀÒÀ, "Äîêëàäû Àêàäåìèè íàóê"”, Äîêëàäû Àêàäåìèè Íàóê, no. 6, 2017, 660
- Musha Ji'e, Dengwei Yan, Shuqi Sun, Fengqing Zhang, Shukai Duan, Lidan Wang, “A Simple Method for Constructing a Family of Hamiltonian Conservative Chaotic Systems”, IEEE Trans. Circuits Syst. I, 69, no. 8, 2022, 3328
- A. A. Elmandouh, A. G. Ibrahim, “Hamiltonian structure, equilibria, and stability for an axisymmetric gyrostat motion in the presence of gravity and magnetic fields”, Acta Mech, 230, no. 7, 2019, 2539
- Pavel E Ryabov, Mikhail P Kharlamov, “Classification of singularities in the problem of motion of the Kovalevskaya top in a double force field”, Sb. Math., 203, no. 2, 2012, 257