45 citations to 10.5186/aasfm.2019.4416 (Crossref Cited-By Service)
  1. Molla Basir Ahamed, Vasudevarao Allu, Himadri Halder, “Improved Bohr inequalities for certain class of harmonic univalent functions”, Complex Variables and Elliptic Equations, 68, no. 2, 2023, 267  crossref
  2. Yong Huang, Ming-Sheng Liu, Saminathan Ponnusamy, “Bohr-Type Inequalities for Harmonic Mappings with a Multiple Zero at the Origin”, Mediterr. J. Math., 18, no. 2, 2021, 75  crossref
  3. Molla Basir Ahamed, Vasudevarao Allu, “Bohr–Rogosinski Inequalities for Certain Fully Starlike Harmonic Mappings”, Bull. Malays. Math. Sci. Soc., 45, no. 4, 2022, 1913  crossref
  4. Zayid AbdulHadi, Layan El Hajj, “On the Bohr’s Inequality for Stable Mappings”, Bull. Malays. Math. Sci. Soc., 46, no. 1, 2023, 43  crossref
  5. Ming-Sheng Liu, Saminathan Ponnusamy, “Multidimensional analogues of refined Bohr’s inequality”, Proc. Amer. Math. Soc., 149, no. 5, 2021, 2133  crossref
  6. Pinhong Long, Jinlin Liu, Murugusundaramoorthy Gangadharan, Wenshuai Wang, “Certain subclass of analytic functions based on $ q $-derivative operator associated with the generalized Pascal snail and its applications”, MATH, 7, no. 7, 2022, 13423  crossref
  7. Vasudevarao Allu, Himadri Halder, “Bohr radius for certain classes of starlike and convex univalent functions”, Journal of Mathematical Analysis and Applications, 493, no. 1, 2021, 124519  crossref
  8. R.Sh. Khasyanov, “The Bohr radius and the Hadamard convolution operator”, Journal of Mathematical Analysis and Applications, 531, no. 1, 2024, 127782  crossref
  9. Nilanjan Das, “The p-Bohr radius for vector-valued holomorphic and pluriharmonic functions”, Forum Mathematicum, 2023  crossref
  10. Rosihan M. Ali, Naveen Kumar Jain, Vaithiyanathan Ravichandran, “Bohr Radius for Classes of Analytic Functions”, Results Math, 74, no. 4, 2019, 179  crossref
Previous
1
2
3
4
5
Next