38 citations to 10.1134/S199508021902015X (Crossref Cited-By Service)
  1. A. T. Assanova, E. A. Bakirova, Zh. M. Kadirbayeva, “Two-Point Boundary Value Problem for Volterra–Fredholm Integro-Differential Equations and Its Numerical Analysis”, Lobachevskii J Math, 44, no. 3, 2023, 1100  crossref
  2. A. T. Assanova, A. P. Sabalakhova, Z. M. Toleukhanova, “On the Unique Solvability of a Family of Boundary Value Problems for Integro-Differential Equations of Mixed Type”, Lobachevskii J Math, 42, no. 6, 2021, 1228  crossref
  3. S. K. Zarifzoda, T. K. Yuldashev, “Some Classes of First-Order Integro-Differential Equations and Their Conjugate Equations”, Lobachevskii J Math, 44, no. 7, 2023, 2994  crossref
  4. A. T. Assanova, “A Two-Point Boundary Value Problem for a Fourth Order Partial Integro-Differential Equation”, Lobachevskii J Math, 42, no. 3, 2021, 526  crossref
  5. M. I. Tleubergenov, G. K. Vassilina, D. S. Kulakhmetova, “Stochastic Helmholtz Problem with Constraints Linearly Depending on Velocities”, Lobachevskii J Math, 43, no. 11, 2022, 3292  crossref
  6. A. A. Kulzhumiyeva, “Reduction of a Linear $\boldsymbol{D_{e}}$-System to a Canonical Form in the Case of Equivalence to a $\boldsymbol{D_{e}}$-System of Higher Order Linear Equations”, Lobachevskii J Math, 44, no. 3, 2023, 1171  crossref
  7. Zh. A. Artykova, R. A. Bandaliyev, T. K. Yuldashev, “Nonlocal Direct and Inverse Problems for a Second Order Nonhomogeneous Fredholm Integro-Differential Equation with Two Redefinition Data”, Lobachevskii J Math, 44, no. 10, 2023, 4215  crossref
  8. D. A. Tursunov, K. G. Kozhobekov, A. A. Shoorukov, “Asymptotics of the Solution of Bisingularly Perturbed First Boundary Value Problem”, Lobachevskii J Math, 43, no. 2, 2022, 506  crossref
  9. Samandar Iskandarov, “Estimate and Asymptotic Smallness of Solutions of a Weakly Nonlinear Implicit Volterra Integro-Differential Equation of the First Order on the Semiaxis”, Lobachevskii J Math, 42, no. 15, 2021, 3645  crossref
  10. S. K. Zarifzoda, “Finding the Explicit Solutions of a Second-Order Differential Equation of Riemann-type with Many Singular Points”, Lobachevskii J Math, 43, no. 11, 2022, 3335  crossref
1
2
3
4
Next