- George Papageorgiou, Pantelis Bouboulis, Sergios Theodoridis, “Robust Linear Regression Analysis— A Greedy Approach”, IEEE Trans. Signal Process., 63, no. 15, 2015, 3872
- John D. Jakeman, Akil Narayan, Tao Zhou, “A Generalized Sampling and Preconditioning Scheme for Sparse Approximation of Polynomial Chaos Expansions”, SIAM J. Sci. Comput., 39, no. 3, 2017, A1114
- Yu Lu, Huahua Chen, 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI), 2011, 347
- Y. Isaac, Q. Barthélemy, C. Gouy-Pailler, M. Sebag, J. Atif, “Multi-dimensional signal approximation with sparse structured priors using split Bregman iterations”, Signal Processing, 130, 2017, 389
- Buxian Chen, Anhua Wan, “General RIP bounds of δ for sparse signals recovery by ℓ minimization”, Neurocomputing, 363, 2019, 306
- Yiduo Guo, Guisheng Liao, Jian Gong, Darong Huang, “Sparse recovery-based STAP method using prior information of azimuth-elevation”, J. Appl. Remote Sens, 11, no. 3, 2017, 035004
- Adel Javanmard, Andrea Montanari, “Debiasing the lasso: Optimal sample size for Gaussian designs”, Ann. Statist., 46, no. 6A, 2018
- Jie Chen, Xiaoming Huo, “Theoretical Results on Sparse Representations of Multiple-Measurement Vectors”, IEEE Trans. Signal Process., 54, no. 12, 2006, 4634
- C. Novara, N. Mohammad Pour, T. Vincent, G. Grassi, “A Nonlinear Blind Identification Approach to Modeling of Diabetic Patients”, IEEE Trans. Contr. Syst. Technol., 24, no. 3, 2016, 1092
- JingYu Yang, YiGang Peng, WenLi Xu, QiongHai Dai, “Ways to sparse representation: An overview”, Sci. China Ser. F-Inf. Sci., 52, no. 4, 2009, 695