Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Межкафедральный семинар МФТИ по дискретной математике
22 октября 2014 г., г. Долгопрудный, МФТИ, Корпус Прикладной Математики, 115
 


Доказуемость и разреженная топология

Л. Д. Беклемишев

Математический институт им. В. А. Стеклова Российской академии наук

Количество просмотров:
Эта страница:382

Аннотация: Топологическое пространство называется разреженным, если всякое его непустое подпространство содержит изолированную точку. Такие пространства можно воспринимать как «почти дискретные». По своим свойствам они сильно отличаются от привычных нам пространств, таких как евклидово. В начале 1980х годов было обнаружено, что операция топологической производной, сопоставляющая произвольному подмножеству такого пространства множество его предельных точек, ведет себя аналогично операции Гёделя, сопоставляющей произвольному утверждению (в рамках некоторой формальной теории) утверждение о его непротиворечивости. В докладе будет уточнена и подробно рассмотрена эта удивительная аналогия.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024