Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Научно-технические семинары Яндекса
9 сентября 2013 г. 16:30, Московский офис Яндекса: Москва, ул. Льва Толстого, 16.
 


Extremal problems for finite sets

Петер Франкл

Количество просмотров:
Эта страница:169

Аннотация: Let $X$ be a finite set of $n$ elements. A family $F$ is a subset of $2^X$, the power set of $X$. The generic question is as follows: Supposing that $F$ satisfies certain conditions, determine or estimate the maximum of the size of $F$. The simplest conditions are:
  • no member of F contains another member (Sprener Theorem);
  • any two members of $F$ have non-empty intersection (Erdős-Ko-Rado Theorem);
  • any two members of $F$ intersect in at least $t$ elements (Katona Theorem).

All the above are by now classical results. Forty years ago the author proposed the more general condition: any $r$ members of $F$ intersect in at least $t$ elements ($r$ and $t$ fixed positive integers). The general answer is still unknown. The lecture will review these and related problems.

Website: https://events.yandex.ru/events/science-seminars/frankl-9sep
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024