Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Геометрическая теория оптимального управления
21 ноября 2024 г. 16:45–18:15, г. Москва, online
 


Pontryagin’s Maximum Principles Meets Deep Learning: A New Paradigm for Optimal Control

Kawisorn Kamtue

Carnegie Mellon University

Количество просмотров:
Эта страница:6

Аннотация: Calculus of Variations provides a powerful mathematical framework for learning optimal control and inference by establishing necessary conditions for optimality, known as Pontryagin’s Maximum Principle (PMP). However, these conditions are often difficult to solve analytically. At the same time, neural networks excel at learning from data and modeling complex, high-dimensional patterns. How can we combine the strengths of PMP with the representational power of neural networks? In this work, we introduce PMP-Net—a neural network model that integrates the mathematical framework of PMP to estimate control and inference solutions. PMP-Net successfully recovers classical solutions such as the Kalman filter and bang-bang control. This establishes a new approach for addressing general, possibly yet unsolved, optimal control problems.

Website: https://us06web.zoom.us/j/84704253405?pwd=M1dBejE1Rmp5SlUvYThvZzM3UnlvZz09
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024