Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Complex Approximations, Orthogonal Polynomials and Applications (CAOPA)
21 февраля 2022 г. 20:00–21:00, г. Москва, online via Zoom at 17:00 GMT (=12:00 EST=18:00 CET=20:00 Msk)
 


Computation of the logarithmic capacity

Olivier Sete

Institut für Mathematik und Informatik, Ernst Moritz Arndt University of Greifswald

Количество просмотров:
Эта страница:117

Аннотация: Computing the logarithmic capacity of a compact subset of the complex plane is a notoriously difficult task. We will discuss its computation for (1) sets with finitely many components and with piece-wise smooth boundary, (2) sets with many small components. In case (1), our method relies on Walsh's conformal map onto lemniscatic domains. The logarithmic capacity is one of the parameters of the lemniscatic domain and can be computed separately from the conformal map. In case (2), we obtain the logarithmic capacity from an approximation of the Green function with the charge simulation method (or method of fundamental solutions). We give several examples and compute in particular (an approximation of) the logarithmic capacity of the Cantor set.
This talk is based on joint work with Joerg Liesen (TU Berlin) and Mohamed M.S. Nasser (Qatar University).

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024