|
|
Научный семинар «Актуальные проблемы геометрии и механики» имени проф. В. В. Трофимова
26 ноября 2021 г. 18:30, г. Москва, Механико-математический факультет МГУ, ауд. 1311
|
|
|
|
|
|
Тензорные инварианты динамических систем с диссипацией с малым числом степеней свободы
М. В. Шамолинab a Московский государственный университет имени М. В. Ломоносова
b Московское математическое общество
|
Количество просмотров: |
Эта страница: | 191 |
|
Аннотация:
Как известно, наличие достаточного количества не только первых интегралов (скалярных инвариантов), но и других тензорных инвариантов позволяет полностью проинтегрировать систему дифференциальных уравнений. Так, например, наличие инвариантной формы фазового объема позволяет понизить порядок рассматриваемой системы. Для консервативных систем этот факт естественен. А вот для систем, обладающих притягивающими или отталкивающими предельными множествами, не только некоторые первые интегралы, но и коэффициенты имеющихся инвариантных дифференциальных форм должны, вообще говоря, состоять из трансцендентных (в смысле комплексного анализа) функций.
Так, например, задача о движении пространственного маятника на сферическом шарнире в потоке набегающей среды приводит к системе на касательном расслоении к двумерной сфере, при этом метрика специального вида на ней индуцирована дополнительной группой симметрий. Динамические системы, описывающие движение такого маятника, обладают знакопеременной диссипацией, и полный список первых интегралов состоит из трансцендентных функций, выражающихся через конечную комбинацию элементарных функций. Известны также задачи о движении точки по двумерным поверхностям вращения, плоскости Лобачевского и т.д. Полученные результаты особенно важны в смысле присутствия в системе именно неконсервативного поля сил.
В работе предъявлены тензорные инварианты (дифференциальные формы) для однородных динамических систем на касательных расслоениях к гладким двумерным многообразиям. Показана связь наличия данных инвариантов и полным набором первых интегралов, необходимых для интегрирования геодезических, потенциальных и диссипативных систем. При этом вводимые силовые поля делают рассматриваемые системы диссипативными с диссипацией разного знака и обобщают ранее рассмотренные.
|
|