Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Римановы поверхности, алгебры Ли и математическая физика
18 февраля 2011 г. 17:00, г. Москва, Независимый Московский университет, Большой Власьевский пер., д. 11, ауд. 310
 


Обощенные тайлинги и кластерные плюккеровы алгебры

Г. А. Кошевой

Количество просмотров:
Эта страница:174

Аннотация: Леклерк и Зелевинский рассматривали рациональные координаты в квантовом кольце многообразия флагов, образованные семействами квази-коммутирующими элементов. Они предложили чисто комбинаторную характеризацию таких семейств в терминах слабо-разделенных множеств и выдвинули гипотезу о чистоте комплекса максимальных таких семейств. Несколько позднее, Шпейер высказал гипотезу о том, что максимальные семейства являются зернами кластерной Плюккеровой алгебры. Используя комбинаторику обобщенных тайлингов мы положительно ответим на обе гипотезы. Доклад основан на совместных работах с В. Даниловым и А. Карзановым.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024