Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Семинар по геометрической топологии
4 декабря 2020 г. 17:00–20:00, г. Москва, Zoom
 


Инвариант Гасснера и многочлен Александера струнных зацеплений (продолжение)

М. С. Тёмкин
Дополнительные материалы:
Adobe PDF 7.0 Kb

Количество просмотров:
Эта страница:238
Материалы:30
Youtube:



Аннотация: Струнное зацепление – это обобщение чистой (в другой терминологии, крашеной) косы, в котором нити разрешается идти вверх (см. картинку). Инвариант Гасснера сопоставляет $n$-компонентному струнному зацеплению $L$ матрицу $\gamma(L)$ из группы $GL_n(Q(t_1, \dots, t_n))$, где $Q(t_1, \dots, t_n)$ – поле рациональных функций от $n$ переменных. Он был построен на прошлых докладах. По модулю некоторых лемм, мы докажем формулу
$$\Delta_{\hat L} = \Delta_L \gamma_R,$$
где $\Delta_{\hat L}$ – многочлен Александера замыкания $L$ (определяемого аналогично замыканию косы), $\Delta_L$ – многочлен Александера $L$ (определяемый аналогично многочлену Александера замкнутого зацепления в $S^3$) и $\gamma_R$ – некоторая функция от матрицы $\gamma(L)$ со значениями в $Q(t_1, \dots, t_n)$.
В прошлой серии мы успели обсудить разнообразные определения многочлена Александера (в т. ч. через кручение Милнора), копредставление Виртингера и исчисление Фокса. Этого хватает, чтобы перейти к специфике нашей задачи. А именно, в этот раз мы напомним определение матрицы Гасснера, введём функцию $\gamma_R$ и докажем основную формулу. В конце я постараюсь, в меру своих сил, обсудить альтернативный подход к доказательству, который не использует диаграмму зацепления, а опирается исключительно на теорию кручений. Для понимания нужно быть готовым принять на веру те рецепты, которые были получены неделю назад.
Доклад основан на статье “The Gassner representation for string links” Кирка, Ливингстона и Вана (arXiv:math/9806035).

Подключение к Zoom'у: https://mi-ras-ru.zoom.us/j/98442461141
Код доступа: эйлерова характеристика букета двух окружностей

Дополнительные материалы: string_link.pdf (7.0 Kb)
Цикл докладов
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024