Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Семинар по комплексному анализу (Семинар Гончара)
17 июня 2019 г. 17:00–19:00, г. Москва, МИАН, комн. 411 (ул. Губкина, 8)
 


On Spectrum of a Selfadjoint Difference Operator on the Graph-Tree

А. И. Аптекарев

Институт прикладной математики им. М.В. Келдыша Российской академии наук, г. Москва

Количество просмотров:
Эта страница:263

Аннотация: We consider a class of the selfadjoint discrete Schrödinger operators defined on an infinite homogeneous rooted graph-tree. The potential of this operator consists of the coefficients of the Nearest Neighbor Recurrence Relations (NNRRs) for the Multiple Orthogonal Polynomials (MOPs).
For the general class of potentials, generated by Angelesco MOPs we prove that the essential spectrum of these operators is a union of the supports of the components of the vector orthogonality measure $\vec{\mu}:=(\mu_{1},\ldots,\mu_{d})$ for the Angelesco MOPs. It is a joint work with Sergey Denisov (Madison University) and Maxim Yattselev (IUPUI).
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024