Аннотация:
Я расскажу о том, как дзета-функция Фибоначчи и некоторые другие лакунарные ряды Дирихле связаны с модулярными формами, и почему при изучении их арифметических свойств полезно пользоваться теоремой Нестеренко об алгебраической независимости рядов Эйзенштейна. Также я постараюсь объяснить, почему теорема Нестеренко — это $q$-аналог утверждения о трансцендентности числа $\pi$ и у чего еще бывают $q$-аналоги.