|
|
Семинар отдела геометрии и топологии МИАН «Геометрия, топология и математическая физика» (семинар С. П. Новикова)
30 марта 2016 г. 18:30, г. Москва, мехмат МГУ, ауд. 16-22
|
|
|
|
|
|
Языки Арнольда в модели эффекта Джозефсона и голоморфные решения биконфлюентного уравнения Гойна
В. М. Бухштаберab, А. А. Глуцюкc a Математический институт им. В.А. Стеклова Российской академии наук, г. Москва
b Московский государственный университет имени М. В. Ломоносова, механико-математический факультет
c Национальный исследовательский университет "Высшая школа экономики", г. Москва
|
Количество просмотров: |
Эта страница: | 375 |
|
Аннотация:
Рассматривается семейство динамических систем на торе, моделирующее эффект Джозефсона в теории сверхпроводимости.
Языком Арнольда уровня n (n-ой зоной захвата фазы в эффекте Джозефсона), называется множество параметров с непустой внутренностью, на котором число вращения принимает значение n.
В нашем случае, в отличие от открытой В.И.Арнольдом картины языков, зоны захвата существуют только для целых значений числа вращения (эффект квантования числа вращения, открыт и доказан В.М.Бухштабером, О.В.Карповым и С.И.Тертычным и чуть позднее доказан Ю.С.Ильяшенко). Более того, каждая зона захвата представляет собой бесконечную цепочку областей на плоскости, разделенных перемычками. Эта цепочка уходит на бесконечность в направлении координатной оси. Границы её имеют бесселеву асимптотику (замечено физиками С.Шапиро, А.Янусом и С.Холли (1964 г.) и недавно доказано А.В.Клименко и О.Л.Ромаскевич).
Рассматриваемое семейство систем на торе эквивалентно семейству биконфлюэнтных уравнений Гойна (доказано В.М.Бухштабером и С.И.Тертычным), представляющему собой семейство линейных дифференциальных уравнений, имеющих на сфере Римана только две особые точки, которые иррегулярны.
В докладе будет сделан обзор результатов о геометрии зон захвата, полученных методами аналитической теории комплексных дифференциальных уравнений. В центре внимания будет задача о координатах перемычек,в том числе результаты, полученные недавно авторами в совместной работе, использующей идеи из гиперболической теории динамических систем.
|
|