|
|
Семинар отдела теоретической физики МИАН
21 января 2015 г. 14:00, г. Москва, МИАН, комн. 404 (ул. Губкина, 8)
|
|
|
|
|
|
Integrable partial differential, differential–difference and finite difference equations associated with Kac–Moody Lie algebras
A. V. Mikhailov |
Количество просмотров: |
Эта страница: | 269 |
|
Аннотация:
It is well known that with every Kac–Moody Lie algebra one can associate an integrable two dimensional Toda type system. In particular the sinh-Gordon equation corresponds to the algebra $A_1^{(1)}$, the Tzitzeica equation to $A_2^{(2)}$, the usual periodic Tod a lattice to $A_n^{(1)}$, etc. In our work we construct integrable chains of Bäcklund transformations for Toda type systems associated with the classical families of Kac–Moody algebras and derive Darboux transformations for the corresponding Lax operators. We also discuss integrable finite difference systems corresponding to the Bianchi permutability of the Bäcklund transformations and associated Yang–Baxter maps.
Язык доклада: английский
|
|