Seminars
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Calendar
Search
Add a seminar

RSS
Forthcoming seminars




Geometric Topology Seminar
June 14, 2012 14:30–16:00, Moscow, Steklov Mathematical Institute, room 534
 


On non-immersibility of $RP^{10}$ to $R^{15}$

P. M. Akhmet'ev, O. D. Frolkina

Number of views:
This page:268

Abstract: B. J. Sanderson noted that for $k < n$ the projective space $RP^k$ is immersible in $R^n$ f and only if the tangent bundle $RP^n$ admits $k$ linearly independent vector fields over $RP^k$ [1, Lemma (9.7)]. Using this remark, P. F. Baum and W. Browder proved that $RP^10$ can not be immersed to $R^{15}$ [1, Corollary (9.9)] by showing that the tangent bundle $TRP^{15}$ does not admit $9$ linearly independent vector fields over $RP^{10}$ [1, Thm. (9.5)]. We present a new proof of this last statement based on U. Koschorke singularity approach [2].
References
[1] P.F. Baum, W.Browder. The cohomology of quotients of classical groups // Topology 3 (1965), 305–336.
[2] U. Koschorke. Vector Fields and Other Vector Bundle Morphisms — A Singularity Approach. Lecture Notes in Math. 847 (Springer, Berlin, 1981).
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024