|
|
Seminar on mathematical modeling in biology and medicine
November 21, 2024 16:30–17:30, It is online (MS TEAMS) now
Moscow, Ordzhonikidze st., build. 3 (Peoples Friendship University of Russia, Faculty of Physics, Mathematics and Natural Sciences), online (the link is inside)
|
|
|
|
|
|
The study of a mathematical model of the epidemic process that takes into account local contacts of individuals in time and location
N. V. Pertsev Omsk Branch of Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
|
Number of views: |
This page: | 52 |
|
Abstract:
A modification of SEIRS model of the epidemic process taking into account time- and place-local contacts of individuals is developed. The model on the base of a high-dimensional system
of differential equations with two delays, supplemented with initial data, is constructed. The correctness of model is studied. Conditions for the asymptotic stability of the trivial equilibrium state, which reflects the solution of the model in which there is no infection, is established. An expression for the infection spread coefficient is obtained. To solve the model numerically, a semi-implicit Euler scheme is used. The results of computational experiments with the model are presented. The significant influence of the heterogeneity of cohorts of susceptible and infectious individuals on the dynamics of the epidemic process is shown. The results of fitting solutions to the original high-dimensional model using its simpler modification are presented.
Website:
https://teams.microsoft.com/l/meetup-join/19%3ameeting_YTI2NzMxZDQtMWQ3My00NzU5LTkwZjEtYmJmMTIyNmE0YmU1%40thread.v2/0?context=%7b%22Tid%22%3a%222ae95c20-c675-4c48-88d3-f276b762bf52%22%2c%22Oid%22%3a%224496f797-8f9d-4b49-a30e-d363347b3ff2%22%7d
|
|