Seminars
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Calendar
Search
Add a seminar

RSS
Forthcoming seminars




Scientific seminar on the differential and functional differential equations
June 7, 2022 12:00, Moscow, Microsoft Teams
 


On the index of elliptic operators associated with groups of shifts

K. N. Zhuikov

Peoples' Friendship University of Russia, Moscow
Video records:
MP4 155.3 Mb

Number of views:
This page:171
Video files:22



Abstract: In this work, non-local elliptic operators on non-compact spaces are studied in the following situations. Firstly, differential-difference operators are considered on an infinite cylinder. The symbol of such operators consists of three components – the internal symbol and the conormal symbols at plus and minus infinity. The latter are families of parameter-dependent differential operators with periodic coefficients, for which the concept of the eta-invariant is introduced, and its main properties are proved. We obtain an index formula containing three terms - an analog of the Atiyah-Singer integral, the difference of eta-invariants at plus and minus infinity, and the third term, like the eta-invariant, depending on the conormal symbol. Secondly, we consider pseudodifferential operators on the real line with coefficients periodic at infinity. For differential operators, an index formula is obtained in terms of the monodromy matrices of limit operators at infinity, and the eta invariant is expressed in terms of the spectrum of the corresponding monodromy matrices. Thirdly, non-local operators in R^N associated with the metaplectic group are considered. A finiteness theorem is proved and explicit ellipticity conditions are found that guarantee the Fredholm property depending on the smoothness exponent of the Sobolev spaces in which the operator acts.
The results were partly obtained in joint work with A.Yu. Savin and P.A. Sipailo.
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024