|
|
Seminar on Complex Analysis (Gonchar Seminar)
April 25, 2022 17:00–18:00, Moscow, Online
|
|
|
|
|
|
Периоды отрицательных-регулярных непрерывных дробей. Рациональные числа
S. V. Khrushchev Satbayev University
|
Number of views: |
This page: | 161 |
|
Abstract:
Periods of pure periodic negative-regular continued fractions
\begin{equation*}\label{mainrepx1}
\underbrace{\frac{-1}{b_1}\underset{+}{}\, \frac{-1}{b_2}\underset{+\cdots+}{}\,\frac{-1}{b_n}}_n\underset{+}{}\, \underbrace{\frac{-1}{b_1}\underset{+}{}\, \frac{-1}{b_2}\underset{+\cdots+}{}\,\frac{-1}{b_n}}_n\underset{+\cdots}{}\,,
\end{equation*}
where $b_i$ are positive integers, are studied. These continued fractions either converge to irrational numbers, or converge to rational numbers including $0$ and $\infty$, or diverge. Given a rational number $x$ we give a formula for the period of the minimal length representing $x$and prove that it is unique. We also classify the so-called primitive periods. Let $S$ and $ST$ be the standard generators of the modular group $\Gamma$. We prove that any $\mu$ in $\Gamma$ can be represented in the form $ST^{b_1}\cdots ST^{b_n}$, where $\{b_1,\ldots, b_n\}$ is a primitive period.
A periodic negative-regular continued fraction
diverges essentially if and only if at least one of the three following conditions holds:
$(1)\quad $ $\{b_1,\ldots, b_n\}$ represents the identity;
$(2)\quad$ $\{b_1,\ldots, b_n,b_1,\ldots, b_n\}$ represents the identity;
$(3)\quad $ $\{b_1,\ldots, b_n,b_1,\ldots, b_n,b_1,\ldots, b_n\}$ represents the identity.
Website:
https://mi-ras-ru.zoom.us/j/6119310351?pwd=anpleGlnYVFXNEJnemRYZk5kMWNiQT09
* ID: 611 931 0351. Password: 5MAVBP |
|