Seminars
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Calendar
Search
Add a seminar

RSS
Forthcoming seminars




Seminar on mathematical modeling in biology and medicine
July 1, 2021 16:30–17:30, It is online (MS TEAMS) now Moscow, Ordzhonikidze st., build. 3 (Peoples Friendship University of Russia, Faculty of Physics, Mathematics and Natural Sciences), online (link in the detailed info)
 


Mechano-sensitive blood proteins and their role in cellular hemostasis

A. Belyaev

Faculty of Physics, Lomonosov Moscow State University

Number of views:
This page:216

Abstract: Hemostasis is a complex systemic reaction of the blood to damage or inflammation of the vascular endothelium. This process consists of several stages, from which two main phenomena can be distinguished: platelet aggregation and blood plasma coagulation. Many proteins are involved in the initiation, regulation, and inhibition of these processes, for example, they accelerate fibrin polymerization, platelet aggregation and activation, chemical signaling, and the propagation of coagulation autowaves. Primary cellular hemostasis in arteries, arterioles and venules is based on platelet aggregation at the site of injury. Usually, this process is triggered under conditions of intense blood flow, hydrodynamic forces have a significant effect on the growth and growth of the platelet aggregate. According to modern concepts, mechanosensitive proteins present both in blood plasma and on platelet membranes play a key role at the first stage of platelet aggregation. Conformational changes occurring in these proteins under the influence of hydrodynamic and mechanical forces cause a change in biochemical activities, which can affect the growth of a thrombus. Various disorders of this mechanochemical regulation cause a syndrome such as thrombotic thrombocytopenic purpura, bleeding or, on the contrary, excessive thrombosis. In this case, some methods of computer modeling of mechanisms in a hydrodynamic flow of a viscous fluid as a tool for predicting violations of the cellular hemostasis system and solving related practical problems. This work was supported by the Russian Foundation for Basic Research (19-01-00480, 19-31-70002).
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024