Seminars
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Calendar
Search
Add a seminar

RSS
Forthcoming seminars




Complex Approximations, Orthogonal Polynomials and Applications (CAOPA)
April 12, 2021 19:00–20:00, Moscow, online via Zoom at 16:00 GMT (=17:00 BST=18:00 CEST=19:00 Msk)
 


Entropy function of a measure and how to use it for orthogonal polynomials

R. V. Bessonovab

a Saint-Petersburg State University, Department of Mathematics and Computer Science
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences

Number of views:
This page:209

Abstract: The main object of the talk is an entropy function of a probability measure on the unit circle and its relation to orthogonal polynomials and Schur functions. In the first part of the talk we will discuss a formula that allows to evaluate the entropy function knowing the values of Schur functions of a mesure at a given point z of the unit disk. For z=0, it coincides with the well-known Szego formula relating the logarithmic integral of a measure and its recurrence coefficients. Then, the entropy function will be used to give a relatively simple proof of the classical theorem by A. Mate, P. Nevai, and V. Totik on averaged convergence of orthogonal polynomials on the unit circle. The talk is partially based on joint works with Sergey Denisov.

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024