Seminars
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Calendar
Search
Add a seminar

RSS
Forthcoming seminars




Functional analysis and its applications
April 19, 2018 10:30–11:50
 


Individual ergodic theorem in symmetric ideals of compact operators

A. N. Azizov, V. I. Chilin

National University of Uzbekistan named after M. Ulugbek, Tashkent

Number of views:
This page:185

Abstract: Let $H$ be a complex separable infinite-dimensional Hilbert space, let $E$ be a fully symmetric sequence space, and let $\mathcal{C}_E$ be a symmetric ideal of compact operators in $H$ associated with $E$. It is proved that the averages $A_n(T) =\frac1{n + 1}\sum\limits_{k = 0}^n T^k $ for any positive Dunford-Schwartz operator $T: \mathcal{C}_E \to \mathcal{C}_E$ converge in $\mathcal{C}_E$ with respect to the uniform norm. In addition, we show that for every non-compact bounded linear operator $x$ acting in $H$ there exists a positive Dunford-Schwartz operator $T$ such that the averages $A_n(T)$ do not convergence with respect to the uniform norm.

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024