Seminars
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Calendar
Search
Add a seminar

RSS
Forthcoming seminars




Seminar on the History of Mathematics
December 22, 2015 18:00, St. Peterburg, Fontanka 27, room 311
 


On the significance of Galerkin method for the analysis of differential equations

S. I. Repin
Video records:
Flash Video 362.3 Mb
Flash Video 1,370.3 Mb
MP4 1,366.5 Mb
Supplementary materials:
Adobe PDF 1.4 Mb

Number of views:
This page:609
Video files:166
Materials:82

S. I. Repin



Abstract: The approach to the construction of approximate solutions of differential equations, suggested in Bubnov and Galerkin, and subsequently developed by Petrov, had a great influence on the development of the theory of partial differential equations derivatives and spawned many methods of quantitative analysis. Galerkin's method stimulated the creation of the concept of generalized solutions and was used to prove the existence of solution of some mathematical physics problems. Modern methods of computational mathematics are widely uses the idea of the Galerkin’s method, which in one or another form is the basis of finite element method, finite volume method, discontinuous Galerkin’s method, dual mixed method and others. The major theoretical problems related with these and other similar methods are proof of convergence to the exact solution and obtaining error estimates. The report provides an overview of the main achievements in this area and a discussing on new unresolved issues related to the quantitative analysis of partial differential equations.

Supplementary materials: repin.pdf (1.4 Mb)
See also
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024