Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Летняя школа «Современная математика», 2014
29 июля 2014 г. 12:45, г. Дубна
 


Случайные метрики на сфере. Лекция 2

В. А. Клепцын
Видеозаписи:
Flash Video 2,509.0 Mb
Flash Video 504.2 Mb
MP4 1,914.4 Mb
Дополнительные материалы:
Adobe PDF 1.7 Mb

Количество просмотров:
Эта страница:227
Видеофайлы:177
Материалы:41

В. А. Клепцын



Аннотация: Из миллиона независимых подбрасываний честной монеты, скорее всего, будет около полумиллиона орлов; это — утверждение закона больших чисел. Явление следующего порядка — центральная предельная теорема, утверждающая, что отклонение от среднего значения будет порядка корня из числа подбрасываний — порядка тысяч. Более того, поделив отклонение на корень из числа подбрасываний, мы получаем случайное отклонение; его распределение с ростом числа подбрасываний становится всё более похожим на некоторое конкретное распределение.
В задаче, которой будет посвящена лекция, мы увидим аналогичный эффект в гораздо более сложной ситуации. Возьмём большое число — $N$ — единичных квадратиков. Из этих квадратиков можно склеить (топологическую) сферу — например, можно склеить длинный цилиндр и заклеить его концы, или склеить «подушку» из двух больших квадратов со стороной $\sim\sqrt{N/2}$. Способов сделать это очень и очень много; выберем из них один случайным образом. Как будет выглядеть такая сфера в типичном случае?
В частности — эта сфера снабжена «римановой» метрикой, устроенной следующим образом: расстояние между точками есть длина кратчайшего пути между ними, а длина пути определяется как сумма (естественно определённых) задаваемых им длин внутри пересекаемых им квадратиков. Как ведёт себя с ростом $N$ диаметр такой сферы? На что она становится похожей при стремлении $N$ к бесконечности?
Оказывается, — это доказали в 2002 году Шассэн и Шеффер — диаметр сферы с такой случайной метрикой ведёт себя как корень четвёртой степени (а вовсе не квадратный!) из числа квадратиков $N$. Частичный же ответ на второй вопрос даёт теорема, полученная в 2011-м году одновременно и независимо Жаном-Франсуа Ле Галлем и Грегори Мьермонтом: она утверждает, что если метрику сжать в $\sqrt[4]{N}$ раз, то полученная случайная метрика по своему распределению будет всё больше и больше похожа на некоторую случайную метрику. При этом сфера относительно этой случайной метрики с вероятностью $1$ имеет (хаусдорфову) размерность 4 — а вовсе не 2!
Более того, для этой случайной метрики существует — гипотетическое! — описание в других терминах: как последовательности независимых «возмущений» обычной «круглой» метрики. И вот для этого другого описания трудным открытым вопросом является придание этому («физическому») описанию формального математического смысла — в частности, доказательство соответствующих теорем сходимости.
Хотя сюжет и довольно сложный, интуитивного понимания понятия вероятности и некоторого знакомства с комбинаторикой для понимания большей части лекции должно быть достаточно.

Дополнительные материалы: 9770.pdf (1.7 Mb)

Website: https://www.mccme.ru/dubna/2014/courses/kleptsyn-1.htm
Цикл лекций
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024