##2.
##1.
Аннотация:
Будет рассказано как из представлений бесконечной симметрической группы (перестановки натурального ряда N с конечным носителем) строятся конструкции типа «топологических теорий поля».
Базовый пример: пусть $G$ — произведение трех копий бесконечной симметрической группы, пусть $K$ — диагональ, $K(j)\subset K$ — стабилизатор точек $1,\dots,j$. Оказывается, что множество двойных классов смежности $R[i,j]:= K(i) G / K(j)$ допускает прозрачное комбинаторное описание как множество двумерных поверхностей со специальными триангуляциями. Далее оказывается, что имеется естественное умножение $R[i,j] \times R[j,l] \to R[i,l]$
(для всех $i$, $j$, $l$), неформально мы выбираем два представителя двух классов смежности в максимально общем положении, их перемножаем, потом берем класс смежности произведения. На языке поверхностей умножение интерпретируется как склейка поверхностей по границе. Из представлений группы $G$ автоматически строятся «представления категории бордизмов» (т.е. по триагулированной поверхности строится оператор так, что склейка поверхностей влечет умножение операторов).