Аннотация:
В школе нам всем прививается ошибочное представление о том, что на множестве рациональных чисел $\mathbb Q$ имеется единственное естественное расстояние (модуль разности), относительно которого все арифметические операции непрерывны. Однако существует ещё бесконечное множество расстояний, так называемых $p$-адических, по одному на каждое число $p$. Согласно теореме Островского, «обычное» расстояние вместе со всеми $p$-адическими уже действительно исчерпывают все разумные расстояние $\mathbb Q$.
Термин адельная демократия введен Ю. И. Маниным. Согласно принципу адельной демократии, все разумные расстояния на $\mathbb Q$ равны перед законами математики (может быть, лишь традиционное \textit{чуть=чуть равнее …). В курсе будет введено кольцо аделей, позволяющее работать со всеми этими расстояниями одновременно.
Цель курса — строго ввести упомянутые понятия и на нескольких содержательных примерах показать, как они работают.