Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Конструктивные методы теории римановых поверхностей и приложения
13 ноября 2023 г. 12:00–13:00, г.о. Сириус, online
 


Periodic anomalous (rogue) waves in the Ablowitz- Ladik lattice and in the 2 + 1 dimensional Davey-Stewartson 2 equation

P. M. Santini

La Sapienza University, Romе, Italy
Дополнительные материалы:
Adobe PDF 9.5 Mb

Количество просмотров:
Эта страница:57
Материалы:11

Аннотация: Modulation instability and nonlinearity are the main causes of the appearance of anomalous (rogue) waves (AWs) in several physical contexts. The theory of periodic anomalous waves has been recently developed on the basic Nonlinear Schrödinger (NLS) model in $1+1$ dimensions, adapting the finite gap method to the Cauchy problem for periodic initial perturbations of the homogeneous background solution of NLS [1]. This theory allows one to express the solution of the Cauchy problem, to leading order, in terms of elementary functions of the unstable part of the initial data, and has already been tested in the nonlinear optics of a photorefractive crystal [2]. Also a perturbation theory of AWs allowing one to study the leading order effects of small perturbations of the NLS equation on the dynamics of AWs has been constructed [3]. In this lecture we show how this theory extends to lattices, using as basic model the Ablowitz-Ladik lattice [4,5], and to multidimensions, using as basic model the $2+1$ dimensional Davey - Stewartson 2 equation [6],[7]. Joint works with P. G. Grinevich and F. Coppini.

Дополнительные материалы: presentation.pdf (9.5 Mb)

Язык доклада: английский

Список литературы
  1. P. G. Grinevich and P. M. Santini, “The finite-gap method and the periodic NLS Cauchy problem of anomalous waves for a finite number of unstable modes'”, Russian Math. Surveys, 74:2 (2019), 211–263  crossref
  2. D. Pierangeli, M. Flammini, L. Zhang, G. Marcucci, A. J. Agranat, P. G. Grinevich, P. M. Santini, C. Conti, and E. DelRe, “Observation of exact Fermi-Pasta-Ulam-Tsingou recurrence and its exact dynamics”, Phys. Rev. X, 8 (2018), 041017  crossref
  3. F. Coppini, P. G. Grinevich and P. M. Santini, “The effect of a small loss or gain in the periodic NLS anomalous wave dynamics. I”, Phys. Rev. E, 101 (2020), 032204, arXiv: 1910.13176  crossref
  4. F. Coppini and P. M. Santini, J. Phys. A:Math. Theor. (to appear) , arXiv: 2305.04857
  5. F. Coppini and P. M. Santini, The effect of loss/gain and hamiltonian perturbations of the Ablowitz - Ladik lattice on the recurrence of periodic anomalous waves, arXiv: 2305.07339
  6. P. G. Grinevich, P. M. Santini, “The finite-gap method and the periodic Cauchy problem for (2+1)-dimensional anomalous waves for the focusing Davey-Stewartson 2 equation”, Russian Mathematical Surveys, 77:6(468) (2022), 1029–1059 (in russian)  crossref; Online english version:  crossref
  7. F. Coppini, P. G. Grinevich and P. M. Santini, The periodic N breather anomalous wave solution of the Davey-Stewartson equations; first appearance, recurrence, and blow up properties, arXiv: 2308.12422
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024