Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Семинар по геометрической топологии
22 февраля 2023 г. 15:40–16:00, г. Москва, МИАН (ул. Губкина, 8), ауд. 530 + Zoom
 

Заседание, повящённое 85-летию А. В. Чернавского


On Chernavsky's theorem about the union of codimension 1 cells

Ф. Н. Каддаж

Количество просмотров:
Эта страница:204
Youtube:



Аннотация: The Schoenflies Theorem tells us that a codimension 1 sphere in $\mathbb R^n$ that is locally flat at all its points is topologically flat. After this was proved independently by Mazur and Brown, Cantrell improved the result for spheres of codimension 1 in $\mathbb R^n$ for $n>3$. That is: an embedded sphere has no isolated singularities where it fails to be locally flat. For $n=3$ there are famous counterexamples by Fox–Artin (1946). This theorem was generalised further by Chernavski (1966) for $n>4$ using engulfing, and independently by Kirby (1967). The generalisation may be stated as:

Let $q: B^{n-1}\to \mathbb R^n$ be an embedding that is flat on both semi-discs $B^{n-1}_+$ and $B^{n-1}_-$. Then $q$ is topologically flat.

We will discuss how this implies Cantrell's theorem and if time permits Chernavsky's 2006 paper on this result.

Connect to Zoom: https://zoom.us/j/97302991744
Access code: the Euler characteristic of the wedge of two circles
(the password is not the specified phrase but the number that it determines)
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024