Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Дни анализа в Сириусе
29 октября 2021 г. 09:45–10:30, г. Сочи, online via Zoom at 08:45 CEST (=07:45 BST, =02:45 EDT)
 


On algebraic properties of classical multiple orthogonal polynomials of discrete variable

A. V. Dyachenko

Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow

Количество просмотров:
Эта страница:119

Аннотация: In this talk, we shall consider the class of multiple orthogonal polynomials with respect to $d$ discrete measures. These measures are supported of the shifts of integer lattices and the weight functions are the product of the classical weights by Charlier, Meixner, Kravchuk (i.e. Krawtchouk) and Hahn. Recently we found a difference analogue of the Rodrigues formula for these polynomials and, for $d=2$, fully classified these polynomials in the case when the measures are positive. These polynomials turn to keep certain algebraic properties of classical discrete orthogonal polynomials: in particular, we derived the corresponding step-line recurrence relations and third-order linear difference equation. Our motivation stems from certain applications: for example, for the marginal indices (if one of the indices is zero – so only one of the orthogonality measures remains) the recurrence coefficients satisfy various Painlevé equations.

Язык доклада: английский

Website: https://us02web.zoom.us/j/6250951776?pwd=aG5YNkJndWIxaGZoQlBxbWFOWHA3UT09

* ID: 625 095 1776, password: pade
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024