Аннотация:
Проблема периодичности функциональных непрерывных дробей элементов гиперэллиптического поля тесно связана с проблемой поиска и построения фундаментальных $S$-единиц гиперэллиптического поля и проблемой кручения в якобиане соответствующей гиперэллиптической кривой. Для эллиптических кривых над полем рациональных чисел проблема кручения была решена Б. Мазуром в 1978 году. Для гиперэллиптических кривых рода 2 и выше над полем рациональных чисел приведенные три проблемы остаются открытыми.
За последние 20 лет теория функциональных непрерывных дробей стала мощным арифметическим инструментом для исследования этих проблем. С глубоким развитием новых методов в теории функциональных непрерывных дробей некоторые классические проблемы приобрели новые аспекты. В связи с этим особенный интерес представляют результаты, значительно отличающиеся от традиционного случая числовых непрерывных дробей. Один из таких результатов дает задача о верхней оценке длин периодов функциональных непрерывных дробей элементов гиперэллиптического поля.
Доклад посвящен верхним оценкам на длины периодов для ключевых элементов гиперэллиптических полей над числовыми полями. В случае, когда гиперэллиптическое поле задается многочленом нечетной степени, конечная длина периода тривиальным образом оценивается сверху удвоенной степенью фундаментальной $S$-единицы. Более интересный и сложный случай, когда гиперэллиптическое поле задается многочленом четной степени. Мы докажем точные оценки сверху на длины периодов функциональных непрерывных дробей элементов гиперэллиптических полей над числовыми полями $K$, зависящие только от рода гиперэллиптического поля, степени расширения $[K:\mathbb{Q}]$ и порядка группы кручения якобиана соответствующей гиперэллиптической кривой.