Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Большой семинар лаборатории комбинаторных и геометрических структур
1 октября 2020 г. 19:00, Москва, Онлайн! https://zoom.us/j/279059822 пароль: первые шесть цифр числа \pi после запятой
 


Erdos covering systems

R. Morris

Количество просмотров:
Эта страница:120
Youtube:



Аннотация: A covering system of the integers is a finite collection of arithmetic progressions whose union is the set $\mathbb{Z}$. The study of these objects was initiated by Erdos in 1950, and over the following decades he asked a number of beautiful questions about them. Most famously, his so-called "minimum modulus problem" was resolved in 2015 by Hough, who proved that in every covering system with distinct moduli, the minimum modulus is at most $10^{16}$.
In this talk I will present a variant of Hough's method, which turns out to be both simpler and more powerful. In particular, I will sketch a short proof of Hough's theorem, and discuss several further applications. I will also discuss a related result, proved using a different method, about the number of minimal covering systems.
Joint work with Paul Balister, Bela Bollobas, Julian Sahasrabudhe and Marius Tiba.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024