Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Когомологические аспекты геометрии дифференциальных уравнений
4 ноября 2020 г. 19:20, г. Москва, онлайн
 


Nonlocal symmetry of CMA generates ASD Ricci-flat metric with no Killing vectors

M. B. Sheftel
Видеозаписи:
MP4 123.3 Mb

Количество просмотров:
Эта страница:190
Видеофайлы:29

M. B. Sheftel



Аннотация: The complex Monge-Ampère equation (CMA) in a two-component form is treated as a bi-Hamiltonian system. I present explicitly the first nonlocal symmetry flow in each of the two hierarchies of this system. An invariant solution of CMA with respect to these nonlocal symmetries is constructed which, being a noninvariant solution in the usual sense, does not undergo symmetry reduction in the number of independent variables. I also construct the corresponding 4-dimensional anti-self-dual (ASD) Ricci-flat metric with either Euclidean or neutral signature. It admits no Killing vectors which is one of characteristic features of the famous gravitational instanton K3.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024