Аннотация:
Пусть имеется множество геометрических объектов, зависящих от параметров — например, пространство всех многочленов степени $d$ вида
$$ x^d + A_1x^{d-1} + \dots + A_{d-1}x + A_d $$ ,
зависящих от своих коэффициетов $A_i$, или систем уравнений, или кривых в пространстве, или поверхностей; тогда дискриминантом называется множество объектов, качественно выделяющихся среди остальных. Например, дискриминантом в пространстве многочленов будет множество многочленов, имеющих кратные корни; при $d=2$ это множество — кривая в плоскости параметров $A_1, A_2$ полинома $x^2+A_1x+A_2$, заданная привычным дискриминантным уравнением $4A_2=A_1^2$.
Дискриминанты различных семейств объектов часто встречаются в математике и в жизни — например, их геометрию можно увидеть в очертаниях солнечных зайчиков (по-ученому называемых каустиками) и волновых фронтов. Кроме того, с их помощью удается эффективно различать неэквивалентные между собой неособые (то есть не лежащие на дискриминанте) объекты.
Задача различения обычно решается с помощью т.н. инвариантов — числовых характеристик, заведомо одинаковых у эквивалентных объектов. Например, если считать эквивалентными два многочлена без кратных корней, которые можно непрерывно продеформировать один в другой, не попадая на дискриминант, то простейшим инвариантом, полностью решающим задачу различения, является число корней. В более сложных ситуациях (например, при классификации пространственных или плоских кривых общего положения, или функций от многих переменных) для различения двух объектов можно продеформировать один из них в другой во всем пространстве, может быть несколько раз пересекая дискриминант, и посчитать, сколько раз, в каком направлении и в каких точках дискриминанта происходило пересечение. Зная структуру дискриминанта, из такой информации можно извлечь инварианты и строго доказать различие объектов.
Я расскажу про геометрию дискриминантов, возникающих в разных задачах, про их связь с каустиками, про задачи классификации кривых, про их простейшие (и не только) инварианты и о том, как в этих задачах используется топология дискриминантных множеств.