Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Семинар по теории функций многих действительных переменных и ее приложениям к задачам математической физики (Семинар Никольского)
19 декабря 2018 г. 16:00, г. Москва, МИАН, комн. 430 (ул. Губкина, 8)
 


Comparing integrals of nonnegative and positive definite functions with respect to different measures

Marcell Gaal, Szilard Gy. Revesz
Видеозаписи:
MP4 1,225.7 Mb
MP4 2,699.7 Mb

Количество просмотров:
Эта страница:288
Видеофайлы:75

Marcell Gaal, Szilard Gy. Revesz



Аннотация: This work developed from our previous attempt in the extremal problem of comparing integrals of nonnegative and positive definite functions over different intervals, say on $I:=[-1,1]$ and $J:=[-T,T]$. We found that there is a constant $C(T)$, depending only on $T$ and in the linear order, such that the integral on $J$ is at most $C(T)$ times the integral on $I$. After publishing this result, it turned out that the same extremal problem was already studied by $B$. Logan, who has obtained the same estimate some 20 years before us. Oddly enough, the proofs were somewhat different, yet the (complicated) formula for $C(T)$ of his and ours matched. Although we conjecture that the obtained constant is not always optimal, this is still unresolved. What we can discuss now, is a conjecture of ours stating that in principle our approach is optimal. The way we arrive at this is somewhat long and abstract, relying on two major elements, one being a duality type formula, which is inherently real-valued, and the exploitation of positive definiteness, which is inherently complex valued. The necessity of combining these two is one reason for the technically involved treatement. Further, we consider (integrals with respect to) arbitrary measures on arbitrary locally compact Abelian groups, and the handling of the general setup thus needs the theory of LCA groups in general.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024