Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Летняя школа «Современная математика», посвященная памяти Виталия Арнольда, 2017
29 июля 2017 г. 11:15, г. Дубна, дом отдыха «Ратмино»
 


Квадратичные формы, K-группа Милнора и группа Брауэра. Занятие 4

С. О. Горчинский
Видеозаписи:
MP4 3,156.2 Mb
MP4 717.5 Mb

Количество просмотров:
Эта страница:343
Видеофайлы:90

С. О. Горчинский



Аннотация: Важным арифметическим инвариантом поля является кольцо Витта, описывающее структуру квадратичных форм над данным полем. Другим инвариантом поля является К-группа Милнора, задаваемая явными порождающими и соотношениями и кодирующая некоторым чудесным образом взаимосвязь между сложением и умножением в поле.
Оказывается, что эти два инварианта тесно связаны. Чтобы проследить данную связь, удобно рассмотреть третий, более алгебраический, инвариант поля, а именно, его группу Брауэра. Группа Браэура описывает структуру некоторых конечномерных алгебр над данным полем.
Более точно, взаимосвязи между этими группами описываются в недавно доказанных гипотезах Милнора и Блоха-Като. Явное описание этих инвариантов для поля рациональных чисел тесно связано с квадратичным законом взаимности Гаусса.
От слушателей требуется общее знакомство с основными понятиями алгебры: векторные пространства, кольца, алгебры, идеалы, квадратичные формы, группы, факторгруппы, конечные расширения полей.

Website: https://www.mccme.ru/dubna/2017/courses/gorchinskii.html
Цикл лекций
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024