Аннотация:Критические точки дифференцируемой функции – это точки, в которых равна нулю ее первая производная (или все первые частные производные в случае функций многих переменных). Изучение таких точек является далеким обобщением исследования функций на максимумы и минимумы и оказалось необходимым в многих задачах механики, физики, топологии, оптимального управления и пр.
Сложные (вырожденные) критические точки (то есть точки, в которых вырождается и второй дифференциал функции) естественно возникают в семействах функций, зависящих от параметров; поэтому особенно важно рассматривать такие семейства – т. н. деформации критических точек – и геометрию множеств параметров, соответствующих функциям, имеющим критические точки тех или иных типов.
Про эту теорию уже рассказывал
М. Э. Казарян в 2013 году. Я постараюсь показать как можно больше новых ее сторон и сюжетов (хотя базовая часть, естественно, будет примерно той же самой).