Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






International youth conference "Geometry & Control"
April 17, 2014 17:35, Moscow, Steklov Mathematical Institute of RAS
 


Analytical Properties of Sobolev Mappings on Roto-Translation Groups

Maxim Tryamkin

Novosibirsk State University, Novosibirsk, Russia
Video records:
Flash Video 198.0 Mb
Flash Video 1,186.1 Mb
MP4 726.4 Mb
Supplementary materials:
Adobe PDF 254.9 Kb
Adobe PDF 69.3 Kb

Number of views:
This page:474
Video files:220
Materials:80

Maxim Tryamkin



Abstract: The roto-translation group, $SE(2)$, is a three-dimensional topological manifold diffeomorphic to $\mathbb{R}^{2}\times\mathbb{S}^{1}$ with coordinates $(x,y,\theta)$. The left-invariant vector fields
$$ X_{1}=\cos\theta\frac{\partial}{\partial x}+\sin\theta\frac{\partial}{\partial y},\; X_{2}=\frac{\partial}{\partial\theta},\; X_{3}=-\sin\theta\frac{\partial}{\partial x}+\cos\theta\frac{\partial}{\partial y}, $$
form a basis of the Lie algebra of $SE(2)$. The bracket-generating subbundle of the tangent-bundle is spanned by the frame $X_{1}$, $X_{2}$.
Consider the basic 1-forms $dX_{1}$, $dX_{2}$, $dX_{3}$, dual to the basic vector fields $X_{1}$, $X_{2}$, $X_{3}$, i. e., $dX_{i}(X_{j})=\delta_{ij}$. Applying the methods developed in [1] we establish a key relation underlying the connection between mappings with bounded distortion [2] and nonlinear potential theory.
$ $
Theorem. Let $SE(2)$ be a roto-translation group and $\Omega\subset SE(2)$ is an open set. Suppose that $f\colon\Omega\to SE(2)$ is a Sobolev mapping of the class $W^{1}_{4,\mathrm{loc}}(\Omega)$, $V\colon SE(2)\to\mathbb{R}^2$ is a vector field $V=(v_{1},v_{2})\in C^{1}$ such that $\mathrm{div}_{h}V=X_{1}v_{1}+X_{2}v_{2}$ is bounded on $SE(2)$, and
$$ \omega(g)=v_{1}(g)\,dX_{2}\wedge dX_{3}-v_{2}(g)\,dX_{1}\wedge dX_{3},\quad g\in\Omega. $$
Then the equality $df^{\#}\omega=f^{\#}d\omega$ holds in the sense of distributions.

Supplementary materials: slides.pdf (254.9 Kb) , abstract.pdf (69.3 Kb)

Language: English

References
  1. S. K. Vodopyanov, Foundations of the Theory of Mappings with Bounded Distortion on Carnot Groups. // Contemporary Mathematics. 2007. V. 424, pp. 303–344.  mathscinet
  2. Yu. G. Reshetnyak, Space mappings with bounded distortion. Translation of Mathematical Monographs, vol. 73. American Mathematical Society, Providence, RI, 1989.
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024