Seminars
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Calendar
Search
Add a seminar

RSS
Forthcoming seminars




Steklov Mathematical Institute Seminar
November 17, 2022 16:00, Moscow, Steklov Mathematical Institute of RAS, Conference Hall (8 Gubkina)
 


Conditional limit theorems for random walks and their local times

V. I. Afanasyev
Video records:
MP4 1,700.5 Mb
MP4 914.5 Mb

Number of views:
This page:387
Video files:58
Youtube:

V. I. Afanasyev



Abstract: In the classical theory of random walks, two functional limit theorems are well known: the Donsker-Prokhorov invariance principle for random walks themselves and the Borodin theorem for the local time of integer random walks. The report discusses analogs of these results obtained
1) for a random walk considered under the condition that its trajectory is positive up to time $n$,
2) for a random walk stopped at the moment $T$ of the first attaining of the non-positive semi-axis and considered either under the condition that $T>n$, or provided that it attains a certain high level of the order of root of $n$.
It is well known that conditional limit theorems for a random walk itself are in demand in the theory of branching processes in a random environment. It turns out that conditional limit theorems for the local time of a random walk find application in the classical theory of Galton-Watson branching processes. In particular, the connection of these theorems with the most important functional limit theorems for Galton-Watson branching processes is established.
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024