Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






School and Workshop on Random Point Processes
November 2, 2022 17:00–17:30, Suzdal
 


On the pointwise rate of convergence in the Birkhoff ergodic theorem: recent results

I. V. Podvigin
Video records:
MP4 61.9 Mb

Number of views:
This page:87
Video files:16



Abstract: Let ${(\Omega,\mathcal{F},\mu)}$ be a probability measure space and ${T:\Omega\to\Omega}$ be a measure $\mu$ preserving ergodic transformation. For ${f\in L_1^0(\Omega,\mathcal{F},\mu)}$ consider the ergodic averages ${A_n^Tf(\omega)=\frac{1}{n}\sum\limits_{k=0}^{n-1}f(T^k\omega)}, \ n\in\mathbb{N}.$ The Birkhoff ergodic theorem states that a.e. ${A_n^Tf\to0}$ as ${n\to\infty}.$
It is well-known [1] that a.e. ${A_n^Tf(\omega)=o(1/n)}$ as ${n\to\infty}$ iff ${f\equiv0.}$ We discuss the existence of estimates ${\varphi\in c_0^{f,T}}$ for the rate of pointwise convergence of ergodic averages (i.e., ${A_n^Tf(\omega)=\mathcal{O}(\varphi(n))}$ as ${n\to\infty}$ a.e.) with the property ${\varphi(\ell_k)=o(1/{\ell_k})}$ for some increasing sequence ${\ell=\{\ell_k\}_{k\geq1}}$ of naturals.
\medskip
Theorem ([2]). Let ${T}$ be an ergodic automorphism, ${f\in L^0_1(\Omega, \mathcal{F}, \mu)}$, ${f\not\equiv0}$ and ${\ell=\{\ell_k\}_{k\geq1}}$ be monotone sequence of natural numbers. If ${\varphi\in c_0^{f,T}}$ and ${\varphi(\ell_k)=o(1/\ell_k)}$ as ${k\to\infty}$ then a.e. ${\frac{1}{N}\sum\limits_{k=1}^{N}f(T^{\ell_k}\omega)\to f(\omega)}$ as ${N\to\infty}.$
\medskip
Some corollaries of this statement will be considered. We also discuss the existence of the power-law estimates.
\medskip
Theorem ([3]). Let $T$ be an ergodic endomorphism, ${f\in L^0_1(\Omega, \mathcal{F}, \mu)}$ and ${f\not\equiv0}.$ Then the function ${\lambda_{f,T}(\omega):=\limsup\limits_{n\to\infty}\frac{\ln(1/n)}{\ln\left(\sup\limits_{k\geq n} |A^T_kf(\omega)|\right)}}$ is a constant a.e. Moreover, ${\lambda_{f,T}<\infty}$ iff there is a power-law pointwise estimate ${A_n^Tf(\omega)=\mathcal{O}(n^{-1/\delta})}$ for some ${\delta>0}.$
[1] Kachurovskii A. G. Rates of convergence in ergodic theorems // Russian Math. Surveys, 1996. V. 51. No. 4, P. 653–703.
[2] Podvigin I. V. On possible estimates of the rate of pointwise convergence in the Birkhoff ergodic theorem // Siberian Math. J., 2022. V. 63. No. 2, P. 316–325.
[3] Podvigin I. V. Exponent of Convergence of a Sequence of Ergodic Averages // Math. Notes, 2022. V. 112. No. 2, P. 271–280.
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024