Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






Conference «Hyperbolic Dynamics and Structural Stability» Dedicated to the 85th Anniversary of D. V. Anosov
November 8, 2021 14:00–14:45, Moscow, online
 


Local rigidity of abelian actions of parabolic toral automorphisms with (at least) one step-2 generator

B. R. Fayad

Institut de Mathématiques de Jussieu-Paris Rive Gauche, Paris
Video records:
MP4 419.1 Mb

Number of views:
This page:201
Video files:45
Youtube Live:

B. R. Fayad



Abstract: Two famous manifestations of local rigidity are KAM rigidity of Diophantine torus translations and smooth rigidity of hyperbolic or partially hyperbolic higher rank actions.
Damjanovic and Katok proved local rigidity for partially hyperbolic higher rank affine actions on tori. To complete the study of local rigidity of affine $\mathbb Z^k$ actions on the torus one needs to address the case of actions with parabolic generators.
We say that a linear map $A\in \mathrm{SL}(d,\mathbb Z)$ is (parabolic) of step $n$ if $ (A-\mathrm{Id})^n=0, $ and $ (A-\mathrm{Id})^{n-1}\ne0. $ An affine map $a(\cdot )=A(\cdot) +\alpha$ is said to be of step $n$ if $A$ is of step $n$.
We say that a $\mathbb Z^2$ affine action by parabolic elements is of step $n$ if all of its elements are of step at most $n$.
We say that an affine $\mathbb Z^2$-action $(a,b)$ is KAM-rigid under $\mu$-preserving perturbations, if there exists $\sigma \in \mathbb N$ and $r_0 \in \mathbb N$ and $\varepsilon>0$ that satisfy the following:
If $r\geq r_0$ and $(F,G)=(a+f,b+g)$ is a smooth $\mu$-preserving $\mathbb Z^2$ action such that
\begin{equation}\label{eq_Commut} (a+f)\circ (b+g)=(b+g)\circ (a+f), \end{equation}

$$ \|f\|_r\leq \varepsilon, \quad \|g\|_r\leq \varepsilon, \quad \widehat f:= \int_{\mathbb T^d} f d\lambda=0, \quad \widehat g:=\int_{\mathbb T^d} g d\lambda=0, $$
then there exists $H=\mathrm{Id} +h \in \text{Diff}^\infty_\mu (\mathbb T^d)$ such that $\|h\|_{r-\sigma}\leq \varepsilon$ and
\begin{equation}\label{eq_System} H \circ (a+f) \circ H^{-1} = a, \quad H \circ (b+g) \circ H^{-1} = b. \end{equation}

We denote by $\mathcal T(A,B)$ the set of possible translations $(\alpha,\beta)$ for affine actions $(A+\alpha,B+\beta)$, that is
$$\mathcal T(A,B):=\{\alpha, \beta\in \mathbb R^d : (A-\mathrm{Id})\beta=(B-\mathrm{Id})\alpha\}.$$

Theorem. Given a commuting pair $(A,B)$ of parabolic matrices where $A$ is step-2 ($(A-\mathrm{Id})^2=0$), we have the following dichotomy
  • For any choice of $(\alpha,\beta) \in \mathcal T(A,B)$, the action of $(a,b)$ has a rank one factor that is not a (nonzero) translation and is thus not locally rigid.
  • For almost every choice of $(\alpha,\beta)\in \mathcal T(A,B)$, the action of $(a,b)$ is ergodic and KAM-rigid under volume preserving perturbations.

This is a joint work with Danijela Damjanovic and Maria Saprykina.

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024