Seminars
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Calendar
Search
Add a seminar

RSS
Forthcoming seminars




Contemporary Problems in Number Theory
June 17, 2021 12:45, Moscow, ZOOM
 


On Romanoff's theorem

A. O. Radomskii

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Video records:
MP4 254.9 Mb

Number of views:
This page:260
Video files:42



Abstract: In 1934 N. P. Romanoff proved the following theorem. Let $a$ be a positive integer with $a>1$. Then there is a number $c(a)>0$, depending only on $a$, such that
$$ \#\{ 1\leq n\leq x:\ \hbox{there is a prime p and a non-negative integer j such that} p+a^j=n \}\geq c(a)x $$
for $x\geq 4$. We will discuss some results related to Romanoff's theorem.
Conference ID: 942 0186 5629 Password is a six-digit number, the first three digits of which form the number p + 44, and the last three digits are the number q + 63, where p, q is the largest pair of twin primes less than 1000

Website: https://mi-ras-ru.zoom.us/j/94201865629?pwd=aUlIbFBFelhFTjhnUnZtdTNFL1IvZz09
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024