Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






Multidimensional Residues and Tropical Geometry
June 15, 2021 14:30–15:30, Section II, Sochi
 


Holomorphic continuation of a formal series along analytic curves

A. S. Sadullaev

National University of Uzbekistan named after M. Ulugbek, Tashkent
Video records:
MP4 1,639.3 Mb
MP4 860.8 Mb
Supplementary materials:
Adobe PDF 105.0 Kb

Number of views:
This page:218
Video files:66
Materials:5

A. S. Sadullaev



Abstract: This talk is devoted to a curvilinear analogue of the well-known Forelli theorem [1]: if a function $f$ is infinitelly smooth in a neighborhood of the origin $0 \in \mathbb C^{n} $ $f\in C^{\infty }\{0\},$ and for every complex line $l$ passing through the origin the restriction $f|_{l} $ continues holomorphically into the unit disk $l\bigcap B\left(0,1\right),$ then $f$ continues holomorphically into the unit ball $B\left(0,1\right) \subset {\mathbb C}^{n}.$
An example of a function
$$ f\left(z_{1} ,z_{2} \right)=\frac{z_{1}^{k+1} \bar{z}_{2} }{z_{1} \bar{z}_{1} +z_{2} \bar{z}_{2} } \in C^{k} \left({\mathbb C}^{2} \right) $$
shows that the condition of infinite smoothness in Forelli's Theorem is essential. The restrictions $f|_{l} $ to complex lines $l \ni 0$ are polynomials, but $f\left(z_{1} ,z_{2} \right)$ is not holomorphic.
The following takes place
Theorem 1. Let the unit ball $B(0,1) \subset\mathbb{C}^{n} $ be fibered by a smooth family of analytic curves $A_{\lambda } =\left\{z=p_{\lambda } \left(\xi \right)\right\}, \lambda \in \mathbb{P}^{n-1},$ at the point $0$, where $p_{\lambda } \left(\xi \right)=\left(p_{\lambda }^{1} \left(\xi \right),p_{\lambda }^{2} \left(\xi \right),...,p_{\lambda }^{n} \left(\xi \right)\right)$ is a holomorphic vector function in the unit disk $U= \left \{\left|\xi \right|<1 \right \}:$ $p_{\lambda } \left(\xi \right)=a_{1} \left(\lambda \right)\xi +a_{2} \left(\lambda \right)\xi ^{2} +..., a_{k} \left(\lambda \right)\in C^{1} \left(\mathbb{C}^{n}\right),\, \, k=1,2,...,\, \, \, \, B(0,1) =\bigcap _{\lambda }A_{\lambda }^{}.$ If a function $f\in C^{\infty }\{0\}$ has the property that each restriction $f|_{A_{\lambda } } ,\, \, \lambda \in \mathbb{P}^{n-1} ,$ that is defined in the neighborhood of $0,$ holomorphically continues to the whole $A_{\lambda },$ then $f$ continues holomorphically to $B(0,1).$
Theorem 1 in the following version is also true under a weaker requirements.
Theorem 2. Under the conditions of Theorem 1, if each restriction $f|_{A_{\lambda } } ,\, \, \lambda \in W \subset \mathbb{P}^{n-1} ,$ holomorphically continues to the whole $A_{\lambda },$ then $f$ continues holomorphically to the domain $\hat {O}=\left\{z\in {\mathbb C}^{n} :\, \, \, \left| z\right| \exp V^{*}\left(\frac{z}{| z | } ,\, O\right)<1\right\}.$ Here $W \neq \emptyset$ is an open subset of $\mathbb{P}^{n-1},$ ${O} =\bigcap _{\lambda \in W }A_{\lambda }^{}, $ $V^{*}\left(\omega ,\, {O} \right)$ is the Green's function in ${\mathbb C}^{n}.$
In the work [2] Chirka showed the validity of the curvilinear analogue of Forelli’s theorem for $n=2$. Further advances on variations of the Forelli's theorem, were obtained in the works Kim et al. [3-5].

Supplementary materials: Azimbay Sadullaev's slides.pdf (105.0 Kb)

Language: English

Website: https://zoom.us/j/9544088727?pwd=RnRYeUcrZlhoeVY3TnRZdlE0RUxBQT09

References
  1. F. Forelli, “Pluriharmonicity in terms of harmonic slices”, Math. Scand., 41:2 (1977), 358–364  mathscinet
  2. Proc. Steklov Inst. Math., 253 (2006), 212–220  mathnet  crossref  mathscinet  elib  scopus
  3. K.-T. Kim, E. Poletsky and G. Schmalz, “Functions holomorphic along holomorphic vector fields”, J. Geom. Anal., 19:3 (2009), 655–666  mathscinet
  4. J.-C. Joo, K.-T. Kim and G. Schmalz, “A generalization of Forelli's theorem”, Math. Ann., 355:3 (2013), 1171–1176  mathscinet
  5. Y.-W. Cho, K.-T. Kim, Functions holomorphic along a $C^1$-pencil of holomorphic discs, the presentation, arXiveMath, unpublished, 2020


* ID: 954 408 8727, password: residue
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024