Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






Multidimensional Residues and Tropical Geometry
June 15, 2021 15:30–16:30, Section II, Sochi
 


Set interpolation by plurisubharmonic geodesics

A. Yu. Rashkovskii

University of Stavanger
Video records:
MP4 269.4 Mb
Supplementary materials:
Adobe PDF 566.8 Kb

Number of views:
This page:161
Video files:14
Materials:6

A. Yu. Rashkovskii



Abstract: Given a pair of compact, non-pluripolar, polynomially convex subsets $K_0$, $K_1$ of a bounded hyperconvex domain $\Omega\subset\Bbb C^n$, we consider a plurisubharmonic geodesic $u_t(z)$, $0<t<1$, between the functions $c_j\, \omega_j(z)$, $j=0,1$, where $c_j$ are positive constants and $\omega_j$ are the extremal functions of the sets $K_j$ relative to $\Omega$: $\omega_j(z)=\sup\{u(z): u\in PSH(\Omega),\ u<0, u|_{K_j}\le-1\}$.
The sets $K_t=\{z\in\Omega: u_t(z)=\min_\Omega u_t\}$ interpolate $K_0$ and $K_1$. For a good choice of the constants $c_j$, the relative capacities $Cap\,(K_t,\Omega)$ are proved to satisfy a stronger version of Brunn-Minkowski type inequality. This is achieved by using linearity of the Monge-Ampère energy functional $\int_\Omega u_t(dd^c u_t)^n$.
When the sets $K_j$ are Reinhardt subsets of the unit polydisk, $K_t$ do not depend on the choice of the constants $c_j$ and are the geometric means of $K_0$ and $K_1$: $K_t=K_0^{1-t}K_1^t$, and their capacities are $n!$ times the covolumes of certain unbounded convex subsets of $\mathbb R_+^n$.

Supplementary materials: Alexander Rashkovskii’s slides.pdf (566.8 Kb)

Language: English

Website: https://zoom.us/j/9544088727?pwd=RnRYeUcrZlhoeVY3TnRZdlE0RUxBQT09

* ID: 954 408 8727, password: residue
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024