Seminars
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Calendar
Search
Add a seminar

RSS
Forthcoming seminars




V. I. Smirnov Seminar on Mathematical Physics
February 22, 2021 16:30, St. Petersburg, zoom online-conference
 


Extremals for Morrey's inequality

E. Lindgren

Uppsala University, Department of Mathematics

Number of views:
This page:213
Youtube:



Abstract: A celebrated result in the theory of Sobolev spaces is Morrey's inequality, which establishes in particular that for a bounded domain $\Omega\subset \mathbb{R}^n$ and $p>n$, there is $c>0$ such that
$$ c\|u\|^p_{L^\infty(\Omega)} \le \int_\Omega|Du|^pdx, \quad u\in W^{1,p}_0(\Omega). $$
Interestingly enough the equality case of this inequality has not been thoroughly investigated (unless the underlying domain is $\mathbb{R}^n$ or a ball). I will discuss uniqueness properties of extremals of this inequality and related inequalities. Extremals of the above inequality are minimizers of the nonlinear Rayleigh quotient
$$ \inf\left\{\frac{\int_\Omega|Du|^pdx}{\| u\|_{L^\infty(\Omega)}^p}:u\in W_0^{1,p}(\Omega)\setminus\{0\}\right\}. $$
In particular, I will present the result that in convex domains, extremals are determined up to a multiplicative factor. I will also explain why convexity is not necessary and why stareshapedness is not sufficient for this result to hold. The talk is based on results obtained with Ryan Hynd.

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024