Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






Geometric Measure Theory and Geometric Analysis in Moscow
September 16, 2020 17:00–18:00, Moscow, online
 


Geometric Measure Theory and fine structure of harmonic measure

A. L. Volberg
Video records:
MP4 248.8 Mb
Supplementary materials:
Adobe PDF 303.8 Kb

Number of views:
This page:224
Video files:106
Materials:30



Abstract: Singular integrals are ubiquitous objects and play an important part in Geometric Measure Theory. The simplest ones are called CalderonCZygmund operators. Their theory was completed in the 50’s by Zygmund and Calderon. Or it seemed like that. The last 20 years saw the need to consider CZ operators in very bad environment, so kernels are still very good, but the ambient set/measure has no regularity whatsoever.
Initially such situations appeared from the wish to solve some outstanding problems in complex analysis: such as problems of Painlevé, Ahlfors’, Denjoy’s and Vitushkin’s.
The analysis of CZ operators on very bad sets is also very fruitful in the part of Geometric Measure Theory that deals with rectifiability. It can be viewed as the study of very low regularity free boundary problems. As such this analysis helps to understand the geometry of harmonic measure. Lennart Carleson, Nikolai Makarov, Jean Bourgain, Peter Jones and Tom Wolff obtained important results on metric properties of harmonic measure in the 80’s and 90’s. But most of the results concerned the structure of harmonic measure of planar domains. As an example of the use of non-homogeneous harmonic analysis, we will show how it allows us to understand very fine property of harmonic measure of any domain in any dimension and to find the answer to several problems of C. Bishop dated from 1991.

Supplementary materials: harmmeasureharmanalysis2.pdf (303.8 Kb)

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024